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SUMMARY

This report describes the development of a mathematical model for

gunner's tracking performance in MTQ Mode II tracking task which is a

linear time-varying antiaircraft artillery system. The Luenberger observer

theory is used to design the gunner model which is composed of three

elements--a reduced-order observer, a feedback controller, and a remnant

element. An important feature of the model is that its structure is

simple, hence the computer simulation of man-in-the-loop AAA tracking

systems using the gunner model requires only a short execution time. A

parameter identification program based on the combined least squares curve-

fittir.g method and the modified Gauss Newton gradient algorithm is developed

to determine parameters of the model systematically. Model predictions of

both azimuth and elevation tracking errors for several target flyby and

manuevering trajectories are shown to be in excellent agreement with the

empirical data obtained from manned AAA simulation experiments conducted at

the Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio. It

is concluded that the antiaircraft gunner model based on the observer

theory can be accurately and efficiently used to study AAA weapon effective-

ness and aircraft survivability.
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SECTION I

INTRODUCTION

The Manned-Systems Effectiveness Division of the Aerospace Medical

Research Laboratory (AMRL/ME), WPAFB, Ohio, performs research on the gunner's

tracking response in Anti-Aircraft Artillery (AAA) systems. To analyze the

performance of an AAA system, a mathematical gunner model representing the

control characteristics of the gunner in the compensating tracking task is

required. Several human operator models have been developed:

1. McRuer Crossover Model [1] - based on classical control theory,

2. Optimal Control Model [2], [3], [4] - based on optimal control and

estimation theory,

3. PID Structure Modified Optimal Control Model [5] - Simplified Optimal

Control Model.

A brief comparison of these models can be found in Appendix A. Although

most of these models can predict tracking errors, they either have a -omplicated

model structure and/or it is difficult to determine values for the model

parameters for a given weapon system.

We wish to design a model whose structure is simple, whose parameters could

be identified systematically, whose computer implementation would be fast and

efficient, and whose output would accurately describe the tracker's response

characteristics.

This report presents an AAA gunner model based on the Luenberger observer

theory [6], [7], [8]. The observer theory provides a new method to obtain an

approximate estimation for the state of an observed syscem. The characteristics

of an observer are somewhat free to the extent that they can be determined by

the designer through the proper selection of an observer gain. There is no

Riceati equation involved in the observer design. The simplicity of the observer

design and its capabiliLy for state estimation make the observer theory an



attractive design method. Then the estimated state vector can be used to

implement a linear state variable feedback controller which represents the

gunner's tracking function. Furthermore, it is assumed that the effects of

all randomness sources in the AAA closed loop system can be lumped into one

remnant element. Therefore, the structure of this model is simple. In addition,

a parameter identification program based on least squares curve-fitting method

and the Gauss Newton algorithm [9] was developed for this model. Hence, its

parameters can be easily determined. A computer simulation program OMS

(Observer Model Simulation) of the AAA tracking task using this model was also

developed. Simulation results showed that the model predictions of the tracking

errors were in excellent agreement with the actual gunner response data of the

manned AAA simulation conducted at the Aerospace Medical Research Laboratory,

WPAFB, Ohio. The computer execution time of the AAA simulation using this

- simple model is very fast. The description of a AAA gun system and the design

of the observer model are included in Section II. Section III describes the

method to determine the model parameters. Discretization techniques for computer

implementation will be included in Section IV along with the computer simulation

results. The conclusion will be discussed in Section V.

2



SECTION II

-p4 MODEL DEVELOPMENT

A. Description of An AAA Gun System

The tracking task of an auti-aircraft artillery (AAA) gun system can be

described by a closed loop block diagram as shown in Figure 1. Two

gunners, one each for azimuth and elevation axes, play the role of

controller in the man-machine feedback control system. From the visual

display, each gunner observed the tracking erroreT , which is the differ-

ence between the target position angle eT' and the gunsight angle e •

Independently, the gunners operated hand cranks to control the gunsight

system to align the gunsight angle (output) with the target position

angle (input). Therefore, the azimuth tracking task is decoupled from

the elevation tracking task in this AAA system. Four trajectories, Figure

2, of the target aircraft were used as input to the AAA system. These

trajectories are deterministic functions of time, although the gunners

do not know their dynamic properties, eT 0T' etc. In order to develop

a mathematical model of the gunner response characteristics in an AAA

compensatory tracking task, we first need to describe the mathematical

representations of the gunsight dynamics. Let us consider an AAA system

with the following gunsight transfer function.

S0 (s)
g = 64 (s + l)

U (s) s(s2 + 12s + 64)

Based on frequency domain analysis of the inputs (target trajectories),

it was found that the frequency bandwidths of all the trajectories in

Figure 2 are around 0.2 Hz. Thus, a simplified gunsight transfer

function

9 (s)
g (i)

U (s) s

can be used for the model design and simulation analysis.

3
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Equation (1) is equivalent to 0 (t) = u(t). Furthermore, Figure 1 definesg

the tracking error eT(t) to be T(t) - 0 (t). The time derivative of eT(t)Tg

is:

erCt) = 0TCt) - 0 (t)
T eT g

= 0T(t) - u(t)

Now let us introduce state variables

xl(t)= A (t)

A
x 2 (t) = eT(t) = OT(t) - 0 Wt)g

The time derivatives of these state variables are

xl(t) OT0(t)

2 (t) x1 (t) - u(t)

Let x(t) be [x 1 (t), x 2 (t)]T. The state space equation of the gunsight

dynamics and target motion can be expressed as

x(t) = Ax(t) + Bu(t) + FeT(t) (2)

where A, B, and F are matrices defined as follows:

A [o 0] , B =[0] , F =[l]
1 °01 L: 101

The scalars u and 0 are the control output of an AAA gunner and the targetT

acceleration respectively.

The tracker's observation of the tracking error is represented in the

measurement equation:

y(t) = Cx(t) (3)

where C is a row vector [ 0 1 ].

B. Human Operator's Internal Model

To develop the observer model for the human operator's tracking response,

it is necessary to obtain his internal model of the controlled plant and

target motion, Figure 3. This internal model describes the understanding

or knowledge the gunner (i.e. human operator) has about the real system

6
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(including gunsight dynamics, display, control crank, and target motion).

For simplicity, it is assumed that the human operator's internal model of

gunsight dynamics is identical to the mathematicdl model of gunsight

dynamics.

As mentioned, the tracker has information about target trajectory 0T

and maybe target velocity 8T, but not precise information of the target

acceleration 0T. Hence, the last term, eT' in Eq. (1) will not be included

in the human operator's internal model of the system. This is the target

•I uncertainty problem whose effect will be included in a remnant element,

considered in the next section.

In addition, the observation noise which might be associated with

measured output y will not be considered explicitly. Its random effect will

also be included in the remnant element for simplicity. Therefore, the

human operator's internal model of the system can be described as follows:

xl(t) = Ax (t) + Bu(t)=1 (4)
y(t) =Cx(t)

The state variable l (t) of the internal model also has dimension two.

C. Observer Model

An observer is itself a dynamic system whose function is to reconstruct the

state variable of a given system (in this case, the human operator's internal

model). An identity observer is an observer which has the same dynamic order

as the observed system. In this report, an identity observer is designed

to estimate the states of the gunsight and the target motion. The structure of

an identity observer used in our observer model design is:

i(t) = Az(t) + Bu c(t) + K [y(t) - Cz(t)]
c

= (A-KC)z(t) + Bu (t) + Ky(t) (5)

z(t) is the state variable of the observer with dimension two. This vector

represents the estimated value of the state variable x(t) and is used to fulfill

the state variable feedback controller. Matrices A,B, and C are as previously

8
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described. K is the observer gain vector. The dynamic response of the

observer is determined by the matrix A-KC. K is designed such that the

eigenvalues of A-KC have negative real parts (i.e. A-KC is a stable matrix).

Then the state of the observer will converge to the state of the observed

system. According to observer theory, there always exists a gain K such that

A-KC is stable if the system is observable. The definition of an observable

system can be formed in [101. It can be shown that the system described by

Eq. (4) is observable. u c(t) in Eq. (5) is the feedback controller and is
c

defined as follows:

u Ct) = -rz(t) (6)

where r is the controller gain, a row vector with two elements. In Eqs. (5)

and (6), the observer gain K and the controller gain r will be determined by

a parameter identification program.

The relation between the control output u(t) of the human operator and

u Wt) is:c

u(t) = Uc (t) + v(t)

where v(t) is a random process called remnant element which represents all

the gunner-induced noises, (e.g., the effect of target uncertainty, the

Sobservation noise, the neuremotor noise, etc.) and modeling errors. The

idea to lump all the random effects into the remnant element is to simplify

the structure of the model. The statistical properties of the remnant v(t)

3: are:

E[v(t)] = 0 for all t,

and (7)
TE[v(t) vT(t)] = V(t) 6(t-T) for all tandT.

where E[-] denotes the expectation value of ", 6 is the Dirac delta function

and V(t) is a function of time to be described in section III. A block diagram

of the structure of the observer model is shown in Figure 4. Let e(t) bE the

941
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estimation error, i.e., e(t) x(t) -z(t), then

i 6(t) -- "_(t) -i(t)

and from Eqs. (2) and (5)

e(t) (A-KC)e(t) + Bv(t) + FeT(t) (8)

K will be selected to make A-KC a stable matrix. Hence, e(t) will decrease

exponentially to zero with time. The mathematical model of the AAA closed

loop system which is composed of Eqs. (2) and (5) can be written as:

i(t) = (A-Br)x(t) + BPe(t) + Bv(t) + FOT(t)
"" ~(9)

6(t) (A-KC)e(t) + Bv(t) + FeT(t)

Let I A

[l t x (t) 
,

zett)

9AIB= Br AF , BI ] and FI [F
0 A-KC 

B

Then

Ajl(t) =A 1 1 (t) + Blv(t) + Fl T(t) (10)

Note that the system matrix A of the above overall system is a triangular

matrix. Hence, the eigenvalues of this triangular matrix are the eigenvalues

of matrices A-Br and A-KC. Now, if we choose a proper control gain matrix F

Sand observer gain matrix K to make A-Br aud A-KC stable matrices then the

overall system *s sta'le. Furthermore, it can be shown that the design of

observer and the design of controller can be done separately. This simplifies

the design procedur-'s. The mean of Eq. (10) is:

zi(t) A1z11(t) + FOT(t) (11)

where zl (t) E[zl(t)].

The covariance of this equation is:

P(t) = A P(t) + P(t)AI + BIV(t)BI T
(12)

where P(t)= E[(Z (t) (t))(Zl(t) - 1 (t)) The derivation of Eq. (12)

11Scan be found in Reference [11].

- II - - -_ _ __ _ _ _
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SECTION III

PARAMETER IDENTIFICATION METHOD

The structure of the gunner model has been designed. To implement this

work, we need to determine the values of the model parameters. A systematic

procedure has been developed (Figure 5). It involves an identification program

based on the least squares curve-fitting method and the Gauss-Newton gradient

algorithm as described in Appendix B. One requirement of this technique is to

select a criterion function J(a) of the unknown palameters a to evaluate the

"goodness of fit" between the model predictions from Eqs. (11) and (12) and the

empirical data obtained from the manned AAA simulation. Parameter identification

occurs iteratively by converging to a set of values for which the curves are

"reasonably" matched.

Empirical data of the tracking error, eT(t), was collected at the Aerospace

Medical Research Laboratory, WPAFB, Ohio, from their manned simulator using

simulated target trajectory 0 T as input. eT and SDT represent the sample ensemble

I mean and standard deviation of the tracking errors over sixteen simulation runs

for a given team. In Eq. (11) the model prediction of the ensemble mean of the

tracking error, eT is located in the second component of Zl(t). It can also be

shown that the square root of the second diagonal element of the covariance matrix

P(t) in Eq. (12) is the predicted ensemble standard deviation of the tracking

error. The parameter identification was done in two parts (curve-fitting of the

ensemble mean and ensemble standard deviation of the tracking error). For both

parts, angular information was input only from Trajectory 4 of Figure 2.

In the first part, e and e' are compared to determine the observer gain

K = [kI, k 2 ] and the controller gain r = [Y1 9 Y2 ]" This comparison was actually

computed in frequency domain. The power spectral density function (PSD) of the

SS[ sample ensemble mean tracking error was calculated, (w). And the PSD, T(),T T
of e' can be computed from the state representation of (t) in Eq. (11). The

fT -

12
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solution to this diff.irentia1 equation is:

T (13)

where C(t) EXP(A t) is the transition matrix.

V Then

e'(t) ft 1[ (t-T) + 23 (t-T)] 0 T ()dr 14

th
where t.. Wt is the ij element of the matrix ý(t). The PSD of YO(t, denoted by

S-,
e (w can be shown 1110] to be
eT()

2 2 215

(w +G (jw) +j~ S6 Mj)

where:S6T (w) is the PSD of OT(t) and G 1 j(jWA) is the ij h element of the square

matrx Gjw)which is defined:

G(s) =L [W0t1 (16)

i.e., G(s) is the Laplace transform of the transition matrix ýt(t) and s is the

variable of the complex plane. It can be shown that G(s) = (sI-A )hence can

be rewritten as:

G(s) =_adj (sI-A )(17)
det (sI-A)

where I is the identity miatrix, det and adj denote the determinant and adjoint.

of a matrix respectively.

Furthermore, because of the structure of A ,it can be shown that (see

reference [8])

G(s) =adj (sI-A) (18

det [sI(AB) det [sl-AC)

Hence

C (S) 1 +Y
21 ss

2

y s +yk + y
G2 3(S) 1 1 2 2 k

2~



and 2
2 (1 + y

IG (jw)" (19)
2z 1 2( 2 + y 2) .

21 2 2

2 (y w) + (y k + Y)
IG (jw)l 1 2 (20)

23 3 2 2 2
[w -w(k -yk) + [(k yy~ +k

1 2 2 2 2 2 1

2

But, when w=0, IG (jw)l is undefined unless y = -1. Under this condition,
21 1

we now have
2 2

w + (y -k)

2 2 6(1

TT

N' S T () = 2 2 2 2. . T • 2 )

[w -w(k -Y k1 + [(k -y )o + y k]
1 2 2 2 2 2 1

Since we normalized all PDS's, this becomes
2

(Yk) S (22)
e T'() = - k )2 eT'(W)

2 2

Let a = [y , k , k I with y = -1, then compute the partial derivatives of
- 2 1 2 1

S-T, (wa) with respect to a.

JST fw, a)

T

All the information is now ready for imnlementation of the curve fitting

program. The criterion function to be minimized is:

J(a) = [ S (wo) - (wT,(o, a)] dt, (23)
0 T T

where W is the frequency bandwidth of the target trajectory (input) and
I f
eSe (wo) is the normalized PSD of the sample ensemble mean of the tracking error.
T

For the ccmputer program we used the discretized form

K 2
J(a) = Z [ S k S_,,,.k, a)] Lt (24)

k= 1

wvhere Aw is the chosen increment between samples in the frequency domain and

k k.A)o wf = KAw. The iterative equation to be solved by the program is

15
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ai+ a -P[ (•ST(Wk' ai ) T •S•tk, Ai)1-

- k=l a3
I I

K s-

Z ( eSTTl a kT S- S)- SeT((Wk (25)

a) T S(e WTkk

k=l 3a

where p is a step size factor defined in Appendix B. The values of model

parameters obtained through the identification program are listed in Table I

be low:

AZIMUTH ELEVATION

y -i -i
Y

y -1.77 -1.877
2

k 25 25

k 2.6 3.76
2

Table I

Once these gains are determined, the system matrix is known. The second

part of curve fitting involves comparing the model prediction and the sample

ensemble standard deviation SD of the tracking error. This part of the program

was computed in time domain.

To begin, we need the solution to Eq. (12). (See reference [ll].)

T t T T
P(t) = (t, t ) P(t ) pT(t, t + ft V(t,r)B V(T)B Tpr(t,,.)dz (26)

Select P(t ) to be a diagonal matrix with diagonal elements d.., i = 1, 2, ''', n.

Thus, the second diagonal element P (t) of the covariance matrix P(t) is
22

16



n 2 t n n
P (t)= Z d ii (t-t) + f E ý .(t-4)B V(T)B (t-r)dt

22 21 0 t j=li=l 21 1 1 2j
0

n 2 t 2
= Z dii42i(t-t ) + f [422(t-T) + ( (ct-)] V(r)dt (27)

i2i o to 22 24.

Since K and r are known and since G (s) and G (s) can be obtained from Eq.(19),
22 24

we need only take the inverse Laplace transform of these quantities to obtain:

4) (t) ey 2 t
22

-Y t _• 4(t) = -c e 2 +c e - 2tcos c t + c e-C2tsin c t (28)2.1 ! 3 ' 3

with c. defined in Table 2 belowS1__I

AZIMUTH ELEVATION
Al

C 1.2 1.33

5 c 1.3 1.88
2

C .26 .4
3

c 4.83 4.633
4:

Table 2

V(t) is the covariance matrix of the random remnant. It has been found that

the main source of tracking error is due to the gunner's uncertainty about the

target trajectory dynamics especially the target velocity 0T and the target accel-

eration . Furthermore, study of the curve-fitting between the empirical data

and the model prediction of the ensemble standard deviation of the tracking error

has indicated that the gunner's target motion uncertainty is the dominant part of

the random remnant term v(t). Therefore, it is proposed that the covariance

17



function V(t) of the remnant term be a function of the target dynamics as follows:

',, . ,• 2 .4%2

V(t) = a + a 0T t) + a 0T (t) (29)
1 2 T 3

where a, a 2 and a 3 are three nonnegative constants to be identified and OT and eT

are estimated target angle rate and acceleration, respectively. The reason that

only estimated values 0 T and 6T were used to represent target dynamics is that the

gunner doesn't have precise information about 0 T and 0T (i.e., target uncertainty

problem). These estimated quantities can be obtained as follows:

0T = (z) - (z) (30)

where z is the state of the closed loop AAA system with the observer model, and
-'

(z) and (z) are the first and third components of the vecor z . Then by
-1 1 -1 3 -- 1

approximation:
rtk) A ( OT(tkl)
e tC eT tk) T( - (31)

At

where At is the sampling interval, tk = k • At. Let

b = [a 1a 2a ], then in addition to P (t, b), we need
- 1 2 3 22

3 P (t,b)
22

3b

Finally, the criterion function:
1 t 2 2

J (b)= [ SDT(t) -P (t, b) dt (32)
T 22 -

t
0

For the computer program, a discretized form of the criterion function is used.
::11

J(b)_ 2: Z, SD2 (tk - P2(tk,_)] At (33)

k=1

The iterative equation to be solved by the program is:

[ aptbT DP (t b.) 1 (t b.) T 2
b. = bi-P )P(k'-i) k'i (tk--b-i)) . 2 (tk'f) (P (t b.)-SD (t
+1 - =i 3b C b Lkl Db 22k=b

The values of model parameters obtained through the identification program

are listed in Table 3.
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2AZIMUTH ELEVATION

S.001 .0005
1

.025 .05

~2i

S.008 .0025

Table 3

A block diagram and computer program listings for each of the two parameter

identification parts (i.e., ensemble mean and ensemble standard deviation) can

be found in Appendix C.

1
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SECTION IV

COMPUTER SIMULATION RESULTS

A. Discretization of Observer Model Equations

To more efficiently use computer time and core, the observer model

equations were first discretized and then programmed.

So, given the continuous state variable equation (10), discretization

yields:
A t At AlA-)At A(ts

znl eAItz + ft eAF(AtS)F 6T(t+s)ds + f eA1(At-SBV(t+s)ds (34)
-l-n 0 Tfn 0 1 n

At

eA z + fAt eAl(At_)ds F 1 T (tn) + f eA(AtS)ds BV(t

AlAt At At Ala

ee z + f eA1 FdO F6T(tn) + f e do B v(tn)

Hence, we have the following difference equation:

z n+l = z•n+ + T Tn + r2vn (35)

where

S= eAlAtr f At eAlOda G F , f= At eAlado * B
1 0 1 2 0 1

At is the sampling period, " T,n T (tn and vn is a random sequence with

the following properties:

E fv ] =0
n

E [ (v -E[v ])(v -E[v ])T] = = V(t) (36)

n n n n n At

where V(t) is defined in Eq. (7).

Taking expectation value of both sides of Eq. (35). We get

-n 1 T,n (37)

where = E~z +11.
-nn~l

The covariance of z is defined as:

Xn+ E[ n+l -1M+l % 1ý1

It can be shown [11] that X is governed by the following equation
n+l
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r 'M

X (P X PT + P V r T (38)

The predicted ensemble mean tracking error can b3 obtained from the second

element of z M+ of Eq. (37), and the predicted covariance of the tracking

error can be found in the second diagonal element of the covariance matrix

o f Eq. (38).

B. Simulation Results

The numerical values of the parameters of this gunner model were determined

in section III with respect to the gunsight dynamics system (Eq. (1)) and a

deterministic target trajectory. Angular information from Trajectory 4 was

the input to the curve-fitting program. Since the parameters have been selected,

all the necessary matrices in Section IV A. are defined. So the AAA gunner

model is now ready to be used for computer sumulation. A computer program, OMS,

for simulating an AAA system with this model representing the gunner response

was implemented. A block diagrair and program listing of this simulation can be

found in Appendix D. The input to this program is the trajectory of the target

motion. Initially, only Trajectory 4 was used. The outputs are the model

predictions of the ensemble mean and standard deviation of the tracking errors.

The results for Trajectory 4 are plotted in Figures 6a through 6d. Each graph

contains empirical data, observer model predictions and POOl formula. (POOl

formula refers to a simple formula to predict tracking error used in the POOl

Ii attrition model program [12].)

4 Azimuth mean tracking error and standard deviation are shown in Figures 6a

and 6b respectively. Similarly Figures 6c and 6d show results for elevation

tracking errors. It is obvious that the predictions by the POOl ormula did

not match empirical data well. However, matching between empirical data and

observer model predictions was very good. All these results indicated that

this AAA gunner model is able to represent the trend of the gunner response in

the tracking task. It was also noted that the sharp peaks in the empirical

data curves were not matched by the model predictions. This may be due to

21
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the simplified gunsight dynamics used in designing this model or an insufficient

number of runs used in generating the sample ensemble mean data. Further re-

search concerning these problems is necessary. Next, this gunner model, with

the same set of parameter values, was used in OMS to predict the tracking

errors for three other target trajectories (1,2,3, in Figure 2). Figures 7, 8,

9 picture these results in the same format as listed above. All the simulation

results show that this AAA gunner model with the same parameter values gives

model predictions in good agreement with empirical data. Therefore, the observer

model is a predi.ctive model in the sense that it can be used to predict tracking

errors of an AAA system for various target trajectories with similar frequency

bandwidths. In addition, the observer model is also an adaptive model since its

parameters depend on the gunsight dynamics and the target trajectory.

A comparison of the model prediction accuracy between the observer mode.

and the optimal control model has been done for these 4 target trajectories.

All the results showed that both models give accurate predictions of the tracking

errors. Figures 10a through 10d show the ensemble mean and standard deviation

of the tracking error as predicted by the optimal control model for both azimuth

and elevation tracking task. Upon comparing Figures 6 and 10, it is obvious

that the AAA gunner model (i.e., observer model) developed in this paper can

predict the tracking errors as accurately as those by the optimal control model.

The computer simulation time of the closed loop AAA system using the observer

model is only 6.5 seconds, while 37 seconds of simulation time are needed to

execute the optimal control model. Therefore, a reduction of 85% computer simu-

lation time can be obtained by using the observer model instead of the optimal

control model. So this AAA gunner model based on the observer theory is very

useful in the analysis of the performance of the AAA gun system.

t
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SECTION V

CONCLUSION

The Luenberger observer theory has been applied to design an AAA gunner

model. The key design requirement was to make the model structure simple so

that it needs much less computer simulation time than the other models. It was

also important to predict the tracking error accurately. Both specifications

have been met. In addition, this report has presented a parameter identification

program which can easily determine the numerical values of the parameters of

this model. Then the model is ready for the computer simulation of the AAA gun

system. The Aerospace Medical Research Laboratory, WPAFB, has applied this model

to the study of a foreign AAA gun system. This model is now being applied to

study several other foreign AAA gun systems and SAMs. The identity observer

used in the observer model still possesses a certain degree of redundancy. The

redundancy stems from the fact that the identity observer approximately con-

structs an estimate of the entire state but part of the state, as given by the

system outputs, are already available for direct measurement. This redundancy

can be eliminated by the use of a reduced-order observer to replace the identity

observer. Further research is continuing to develop an observer model which uses

fewer states. This will further simplify the structure of the current observer

model and shorten the computer time. Now, to determine the parameter values

for the model, it is necessary co have empirical tracking data from a given

weapon system available. So another worthwhile extension of this work is to

develop parameter adjusting rules for this model such that the numerical values

of the parameters can be obtained without the use of the empirical data. This

project is now under study.
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APPENDIX A

A Comparison of the Human Operator Models for AAA Systems

This appendix will give a general description and comparison to the

following models:

1. McRuer Crossover Model (based on classical control theory)

2. Optimal Control Model (based on optimal control and estimation theory)

3. PID Structure Modified Optimal Control Model (simplified Optimal Control

Model)

4. Observer Model (based onthe observer theory)

1. McRuer Crossover Model

The structure of the McRuer crossover model is described in the frequency

domain in Figure 11(a). Yc(s) is the transfer function of the controlled system

and the crossover model is composed of a linear element YH (s) and an random element

(remnant). An interesting relationship of the open loop transfer function YH (s)Yc(s)

was found by McRuer as follows:

-joyUYH QJW) YCQjW) W e e
c
jW

around the region of crossover frequency. The two parameters W and T are crossover
c e

frequency and effective time delay respectively.

This model was developed using classical control theory, i.e., frequency

domain analysis. It is a useful model of a human operator primarily applied to

single-input single-output linear time-invariant systems with random or random-

appearing inputs. The applications to multivariable systems or time-varying

systems or deterministic input forcing functions are not straightforward.

2. Optimal Control Model

Optimal control model assumes that the human operator behaves in an optimal

manner subject to his inherent limitations and to the requirements of the control
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,-HUMAN OPERATOR MODEL-,

REMNANTI CONTROLLED SYSTEM

INPUT+
IN..• •Y H(;)Y (•

(a) McRU5F(CROSSOVER MODEL

6B,3ERVATION
ERROR

eT + TIME , KALMANx-D•A IT• -- , PREDICTOR-
+XDE'LAY FIIýTlfR

NOISE
OPTIMAL +NEUROMOTORu

4x
CONTROLLER + DYNAMICS

(b) OPTIMAL CONTROL MODEL

OBSERVATION
NOISE

eT + eT KALMAN OPTIMAL u

x- FILTER CONTROLLER

(c) PID STRUCTURE MODIFIED OPTIMAL CONTROL MODEL

REMNANT

eTI FEEDBACK + u

• •OBSERVER _7TOLE --

(d) OBSERVER MODEL

FIGURE 11. BLOCK DIAGRAMS OF HUMAN OPERATOR MODELS
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task. Kalman filter is used in the model to obtain the optimal estimation of the

state of the dynau .ystem. Then the optimal, linear, state variable feedback

control is implemented by using the estimated state. The block diagram of the

model is shown in Figure 11(b). Optimal control model is b,,sed on the state

space techniques to describe the dynamic system and hence is convenient to be

applied to multivariable systems or time-varving systems. So the optimal control

model is a good gunner model for complex weapon systems. The problems of the

optimal control model are summarized as follows:

a) The structure of the optimal conLrol model is complicated. There are

two Riccati equations (which are nonlinear matrix differential equations)

involved in the model to be solved. Therefore the computer execution

time to generate model predictions of the tracking errors using optimal

control model is lengthy.

b) There is no systematic method to determine the parameters of the optimal

control model. Usually it takes a long time to modify the cost function

or model structure in order to obtain a set of parameter values to give

satisfactory model predictions. Generally speaking, these parameters

are determined through trial and error.

3. PID Structure Modified Optimal Control Model

The PID structure modified optimal control model is a simplified version of

the optimal control model. Its structure is shown in Figure 11(c). Obviously, it

is much simpler than the optimal control model. In addition, this model assumes

thatthe human operator learns an input-output type of internal model relating the

human's control u(t) to the displayed variable e T(t) (i.e., input to the human

operator), without using any explicit representation of the actual system dynamics

and forcing functior. The advantage of this idea is to have simple mathematical

equations for the model. The disadvantage of this formulation is that it may be

difficult to tune the parameters effectively to obtain accurate model predictions.

Another good idea in this model is the consideration of the lower order
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internal model of the controlled plant. But this causes the divergence of the

'.4 ~covariance matrix of the Kalman filter. Further study is necessary in order to

use this idea successfully.

4. Observer Model

"Two of the main design requirements in the development of the observer

model are:

a) systematic determination of parameters of the human operator model,

b) simple structure of the model (this shortens execution time in the

computer simulation of an AAA tracking task).

The Luenberger observer theory was applied to develop this model and its

basic structure is shown in Figure 11(d) for comparison. In this figure, the

observer plays the role of the Kalman filter and the feedback controller plays the

role of the optimal controller. An observer generates an estimate of the state

for a dynamic system. Its advantage is that no Riccati equation is required to

compute the observer gain. (ote that in the optimal control model to compute the

optimal Kalman gain, a nonlinear matrix differential equation has to be solved.)

Similarly there is no quadratic cost function involved in the formulation of

observer model. Only a linear state-variable feedback control law is used in

this model. Hence, the structure of the observer model is much simpler than that

V of the optimal control model.

In addition, the parameters of the observer model are not determined by

trial and error ttning. The developed parameter identification program (i.e.,

least squares curve-fitting program) in Section III can identify the parameters

systematically.
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APPENDIX B

Development of Gauss-Newton Gradient Method

Consider a scalar function J(a) of a vector parameter a and its first

derivative 3J(a)/aa. Taking first order Taylor series expansion of DJ(a)/aa with

respect to a minimum a* of J(a), we have:
2

aJ(a) 3J(a*) 3 J(a*)
+ [a- a*]

aa •a ~ T - -

The first term of the right hand side of Eq. (Bi) is zero because a* is a minimum

of J(a). Now, if the second derivative of J(a) with respect to a at a* is not

singular, then Eq. (BI) can be rewritten as follows:
2

a* = a [ J~* 1 a(a) (B2)

-aaaT a

Eq. (B2) can be used as a basis for an iterative relation to obtain the minimum

of the function J(a). The iterative relation is given by
2 -1J3(ai) I J~

a -J( (B3)
il=• - a~a aT Iaa

This is the Newton gradiant method. In order to satisfy the descent property,

i.e., J(ai+1 ) < J(a.), a one-dimensional search for p is performedto adjust the

step size of increment in the iterative procedure. Newton method can now be

written as: -- 2

a a.a- _(_ i)
-+l =- - Tj - (B4)[ a~a aa

The Gauss-Newton technique is an attempt to obtain convergence characteristics

that are similar to the Newton method without calculating the second derivative

of the criterion function with respect to a. Consider a known function f (x) and

a second function f(x,a) where a is a parameter vector of dimension p, to be

determined in order to minimize the criterion function:
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Sxf 2
J (a) = f fl(x)- f(x, a) ]dx (B5)

Where x0, xf are integral limits. Take a first order Taylor series expansion of

f(x, a) about a certain initial guess ao and substitute into J(a).

Xf f(x,2
[ f 1 (x) - f(x, ao) - -0, (a - a.) I dx (BO

Ja x0 fa

For simplicity we will assume that f (x) and f(x, a) are acalar functions of x

4 Iand (x, a) respectively, and a is a p dimensional vector. Now the scalar criterion

function J(a) can be rewritten as:

J(a) = {(f (x)-fx,a ))2-2(f(x)-f(x,a)) U f(xa) (a - ) f(x, a0 ) }dx

X L 0 (a-a

(B7)

Taking the partial derivative of J(a) with respect to a, we get

•J(a) xf af(x, a .) af(x, a2) af(x, a )

-2(fl(x) - f(x, a 0 )) +2 (a-a) ]dx

_a x 0 Da Da Da

(B8)

Note that the gradient of the criterion function is zero at its minimum a*.

9J(a*) xf Df(x, a 0 ) ýf(x, a0) ýf(x,a 0 )
S0 ... . f -2 (fl(x)-f(x, a)) + 2 (a*-a dx

(B9)

So taking the transposition of the resulting equation gives us

Xf Df(x, aj) T xf af(x, a0 ) T Df(x, a)

f ( ) (fl(x) - f(x, a) )dx = f (- ) (a*-ao) dx
x o a x0 o a ýa

(BIO)

For the discrete time case, the analogous result is:

K f(xk,ao)T K 3f(_ ,a) T f(xk, foa

f 1 (X fl(Xk) f(xk, ao) )= Z ( ) ( )(a*-ao)k=1 ýa k=1 a•
(BlI)
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Hence, 1
[* =a- K (~f(xk,a0)\T •f(xk,ao) 1 K (a f(xk'a Tf a)l BI2

-A a ' fa jx k-1 3ak ) fl(x~~k ,

The iterative relation is given by:

K f(xk a)T (af(xk K a)f(xk,a)T

a. = k - (I f( i ( a , k }(((xk ,a.)-fl(x,)
I\ -a , a |1 kIk=l 3a _ 3a

(B13)

In order to satisfy the descent property, i.e., J(a ) < a one dimensional

sear-h for p is required. Thus the modified Gauss-Newton iterative relationship

is expressed as: -i ),

ja.+ =a. -p __ _ E( kflx
-4+1 3a K.2 (lfxk~)) 3] ( af( )) (fx Wk)fC

I(I
(B14)

Let the second term of the right hand side of Eq. (B14) be denoted by + pD-,

then:

a.+, = k% + pýD
1 + I

Initially p = 1. If the descent property is not satisfied Ehan p is halved. This

process continues until J(a ) < J(ai) or a lower limit is reached. At each

iteration p is reset and the criterion function is again checked.

Let
(D.).

E. = for j = 1,2,.... p.
3 (a,).

th

where (D.)_ and -Ca ) are the j components of D. and a. respectively. The

convergence of Eq. (B14) is established whenever

IEjI < e for j = 1,2 ..... p.

where 6 is a preassigned small positive number. Otherwise, further iteration is

required.

Following is a flowchart for a computer implementation of the modified

Gauss-Newton method.
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APPENDIX C - PARAMETER IDENTIFICATION PROGRAM

A. FLOW CHART OF PARAMETER IDENTIFICATION FOR PARAMETERS ASSOCIATED WITH MEAN4 TRACKING ERROR EQUATION

READ: INITIALIZATION:FI)=S-ý (w) F3o=S (W•a
eT I=,..NI I(

F2(I>=S (u

S(k)= Y2 k,k 2  L da(k) j
k=12,3N SJo(a)= ZI (FI(1)-F3o(I)),

CALULATE
D,

UPDATE: F3i+1

Bi+l

YES ~i+ I N

~%LJM9 ERROR1
5

SIa+•ndi+l] --- 4 Ji''+i < LIM2! HE•R 2

i =i+l

(-STOP -•



I! COMMENTS: EXECUTION OF PROGRAM FITI

1. COMPILE PROGRAM

2. INPUT: ATTACH TAPEI AND TAPE2 where

TAPE1 CONTAINS EMPIRICAL STANDARD DEVIATION OF TRACKING ERROR

TAPE2 HAS PARTIAL DERIVATIVE INFORMATION (described later in SDCON)

3. ATTACH D.L. KLEINMAN [13] LIBRARY

SSUBROUTINE - GMINV, VMATI, VSCALE

4. RUN

5. OUTPUT: PARAMETERS VALUES FOR [ct 1 , ct2' a 3]

-5
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1 PRdRAI4 £iIIpouTOUTPUTTAO1,L±TAPEZ)
PRINT4,509.ryoS 1 -0 GO OR~ TYO-- 0 TO STOPAEADO' ZFG

-IF4IIG#EQ90)STO0

-REWXAJO 2
tALL INIT
60OTO 1
i.NO
SUBROUTINE INIT

C ThITIALrurrt4O qO'JT!NFC kEAD IN DATA TO 3: FITT--oC Nicj Itm4IAL ru-S"-

COMMON4AT/Fiii12 :) F2tl1?5 t'3t iizr) A t31 AAC3) C lII259)D3
PVINT*,301. TYD' hIl
REAV * Lr41, Mvi 9 -.,

14. 04

00 10 1=111

3 SO FC3A4) 2(T ( $), zI Note: Matrix B is computed in a separate4 FC~~rc~G~.~,routine 
SDCOtN (listing follows)

10 F CONATI(- 1? 
since B remains constant throughout14P COTIU 

io process.

CALL C~,o
CALL J414iiU)

CALL. LOOPtwJ,v
1

SUSIOUTIfl-E J'4:4(l~J)
C COt1PUTE Z!:I, FU4'417I)JN

00 13 12104p

or" Ni:04

0C 13 J1it'p

00 35 K21*4
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SN:F3 (K) -F I(,()
OC 30 1-1,IP

31,. CONTINU.I
CALL G'tI4Vf:3,I*,o~w1,49,O)

CALL VSA:()-)I--,
;.NO
SL'143UTINJE ..)22(mJ2,PI

C ITZRATIM 3~Cr3S
C CO'iPuT: A:+.I:A:),%L*0(t)
C OL'TE~timiJ 4'47' .a U+l) !S A~PAL

I CZALL O)(IFP

U (1) =JC (I ) ,)-

-;L C7FflM
5 CALL J'IINf~jI)
6 iF(RJloL7*lJ!lrC 73 3C

iF(N,^T*L".L14.1)'-,( TO 2

30 :00 3: tli ,:'

GC T3 .0
20 M%^Tx:T~gl

S~TOD=A7 1C=MT,0,j

DEL=I.

GCD TI 1.

:'I4T0.3$HZA.:.AA

C CC'4r'iT. FUZIO*4 eltW.41 r1 ,VL'4. 2';4tyrES A
C PAýRTIAL 0!21':VrýV'S ý, --3(4iA) ~4rT A oi IN 4AT:IX 3

10 CONT:*4'J-
LN5
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S~B. FLOW CHART OF PARAMETER IDENTIFICATION FOR PARAM•ETERS ASSOCIATED WITH STANDARD

•-l DEVIATION OF TRACKING ERROR EQUATION

• • READ : INITIAL IZATIONSF1(1)=SDT(t)=I.., F30=P2tb)
1=,..N 2,2t-o

"•)IFI(1)=(FI (1))2 B =FP2,2 (tlb)•
• ~b-o(k)• If1,• 2 'y3]L _

•L•k=1,2,3 N
•)~~ ~ 1o b 71 (1) -F3° I)

[ [ CALCULATE:

DDi

UPDATE: F3 i+1

Ji+l

i i+l <ji

? Ye N CHECK:

0=/2 0< LIMI/ -ERROR I.,

Ses D(k)( < E > NoN

L CHEK: No STOP

Ji+l - Ji Ji+l i < LIM2/ -ERROR 2

:•- i=i+l

S~STOP

• : 55
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Ja. .

COMMENTS: EXECUTION OF PROGRAM FIT

1. COMPILE PROGRAM

2. INPUT: ATTACH, TAPEl and TAPE2 where

TAPE1 CONTAINS PSD OF EMPIRICAL MEAN TRACKING ERROR

TAPE2 CONTAINS PSD OF "T FOR GIVEN TRAJECTORY

3. ATTACH D.L. KLEINMAN [131 LIBRARY

I; SUBROUTINE USED - GMINV, VMATI, VSCALE

4. RUN

5. OUTPUT: PARAMETER VALUES FOR[Y 2 ' k1 ' k12

11
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04G~' FIT(IkbUTO 1iT WO ,TAP5E1,TAPc.2,TAPE6) - -

I PR,1NT*4,5HTYP J TO GOOR TYPE 0TT STOP

-1F(IFGqEQ*3WST3*

EW1N3 S
REWIND 2
CALL INI-T - -

GO TO I
END"-
SUSROU TINE I'4IT

c I NI T IALIZ2ATI!Off -bUT I W
C REA3 AN DATA TO 9'1 cITTED
c ?tAK-- -INIT IAL -GUiSS-

COMION/VAi:/LTM1;,LI'1E,:,IPdI.,N,D!L

DATA N1'1,I'./513,o,0.OZ..1*3/
PRINT*',301- TYOE V4 :MI42.

00 £0 11,'4
AEAD (1 3) Z, 01( 11 .. --

RLA 3 2, -0 2, F2(I)
At FOR?$47. I X,?Gl? a .)
3 FORMAT (IX !Gl2*0
16 CONTINU-.

PRIW44 9300 DtIE1r FIRST GUESS -

PRIV*T,101- 1ST SUESS9AA,
DEL =1
LALL COIF(AA)
CALL J1IN(IJZ) -

CALL LJOD(QJ2) - - - . . .. . . . . -

00 2O 1:1,1
WR1TiE(69ý,:) V-11,F3 1T

20 FFýW-O:0 +4
25 FOVr4AT(?G1!.3i

L.NO

c CO'IPUT: JcIT!vI CJ'CT'.tlf

SUM =3.
ZOO 10 I=1,4

10 SUM=SU'1+ (Ft ij)-1 fjIPJ'4 .-

AJ: SUm
E ND
SU3oUVIN: )3

C LALCtiLAT.:' 3 4'iATX FROM 0 ANO R

cOIvA-/c!'{iLI32,zEIPIN;')L ..-

"CaNNO)N/MAT/Fl (51.33 ,F?(--13),F3 (13) ,,A(3) ,AA(3) ,9(513,3) ,O(3)

N DI N=3$140E I'll=-#- -- - - --

KIN4-K0lJTzfi
00 la Izi1d3
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ýc 3; '(=1,1
!ý=5M- c2l M.

0033 I19,:>
Do .15 J1,tz2

30 %(.T)=(l) .3(..T)*SN

CALL c'4ZNV(I-lP, lv-'0

E NO
bU~3;uT:W4 JO= J?

c CO9'-JT*- A (;-!1=4 +.-*LI):
C CE-TQRM'IMN_ 44 _:`4 .4 1+ I) IS A ZýNPT 4 SL_:

taCT=:NC r=i
1 CALL C)
2 JO 130 I=,I

100 A(I)=AA(I)t)(I)
C AL L C3-"F (I)

5 CALL J41i.4 J(J)
6 iPV(RJI..LT.*J2)G) -3 30

IF M^VT L_ L',"11) GO TO 2

S T3 P
30 00 3r. I=, I V)

35 FQ0(I)~A S 3 I I &

GO TO 40--
20 i1CT2btCT*I1

IF(MNT.L=E.:.42)-O TO S
Pf%14T*,o7H '1O'42, 1-4 -A:,qA',_ NC:NC,1 1AT4MT .JlgR.J2
S TOP

9 RJ2:PJ1.....
NCT :0
DEL 2 1
DO 25 1=1 'IS)

25 AA(I)=A(I)
GO T3 1

.0 P~f~f&'.,itiTTAM ,T_ ThYI=
PRINT' ,3HAA:, AA

4!5 INt;ýAf ije- 3_ 1-2i 2 X..~ 9AJJ 2 15 1 ma
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&NO

C COMPUTC FUICTIOl F3(W,A) rIV--N P,;RA~IkTERS A
C LX-P-R- PA6irOI~IVSO F'(W,A) WRT A IN 1t.4TRIX -3

-oX#4EN SION -(M)

-COMMON/MAT/F1(313),F2(--I3lF3'(5I3'),A (3) ,AAi3),3(:,13,3),o(!)

A2(pQRO =*R+P*P-Z. O

PI:2.*3. 1LI53
WW=F~tEQ=O

SN:WiWW*(4WWWA*(4(4l).W((),,f(3))+A,3(W(L),W(Z).W(3)))
SN=(WW**6*+SN.(A4t(Wil),W(2),W(3)) m *2)
T NZ 1A i(W 1lI,4(2) 9*W ( 3) ) 4 ) *( WW*WW +T~i 4

B(IL=(A14*(diiFW(z;(l)-)W(l)*(WwwW+T(3)-Z'S*W-(I,))~2~!I
B3(I,3Al(4±),'4(I2),A(t),(W(3))i'UWN(v(VWW4 WW+WI(iW(1)4W)W(3))*S4(

SNI=3:.(SNI* T 1*4Wi ,W)((Al4(3() ,W(2hWN*(3) )) *2s*FS)
I t N ~Q.I / Ij

1 8 (1C2WONTIW4 W+W2W +A I)9W(2U W
(I , N'W(3 W() W - ,*F21

cl ~ ~ ~ ~ ? Q~ ~ ~ i 9 A) 1 TNI3 "

8U9)A ((ý , ()W3 ) 4# W* W 3 * W W + ()WI * () -l

B(93=-A4W(~g('l~W3)64)*NIS.-T*59L3

I3)(A (i)W2 g ()4 3*NIN



COMMENTS: EXECUTION OF PROGRAM SDCON

-• 1. COMPILE PROGRAM

2. INPUT: ATTACH, TAPEI which has TRAJECTORY INFORMATION

• 0T' 0T' 0 T, •T' •r' Fr

3. ATTACH INTERNATIONAL MATHEMATICAL & STATISTICAL LIBRARY (IMSL)

SUBROUTINE USED VCONVO

4. RUN

5. OUTPUT: TAPE2

PARTIAL DERIVATIVES OF P(2,2) WITH RESPECT TO (ci' a2, a 3 )"

I
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DIIIENSION 1(0*,il2)l(~ttW(2t(9)F(04t(04

1 I * 6 ,6y9-1 t 91-,Io 41-
4=1 0 2-, 30'1L=s 04

C AP1 S 10T APW!T'4 TiAJ-CT'.Y INFO IN DrGPt.ES

C TA~rcz it CJTPIJT TAP-2 WITH PART~fL flbRIVATIVES OF P(2,2)
C IC=l F3R AZI4iUTL A11119 IC=? FOR ZLi V.TICN

REAO#,IC
C _AMI)G(2,3) A I(1) '(2,-d

-V=P'I+P?*(CT, 30T)*(OT DOTr)030dT Cr'OT)*(OOT DOT)
C F2MI=O(I9,I)*QfII)

-- T=(I-i)'OL.

--- AMISCM, I-f)*(tXP(V^(2,I^1)"T)-A(I))

-REAM i5) CT 9 1) 9D 1) _-0,~)
IFIC. -:Q.l1) SO T~3 6

10 CONTINUE
T FCIRMAT (66 1!.4

C- PARTIAL OF 0(2,2) W'27 P2
CALL VCOI4V3(At~qP4,N9TWK)

-- -00 100 I=10~

DMI)A(I)

C PARTIAL 0-: P(?,?) WD.T 03
CALL VC3NM(9,0,NT&W.)
00 20 I= 1 9

A1(I)=A(I)
A(I)=AA

20 8(I)=1.
~~A~Y6'r OF4(?,?) W~'l P1

CALL VCONV3(A,3,&N,?I.IWK)

4 0 CRAT (4.G 12. )
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APPENDIX D

INITIALIZATION

.1 Choose AZ, EL, or both
A. FlwCa2. Type in parameters (icA,, V 3

:•-i .. Flow Chart Of

Simulation Program e bAT
3. Set up AV, compute eA hnd0e 1 d

4. Calculate r 1,r T

l' 2'2

5. Initialize time, state variables,
and covariance matrix

Read Trajec-
tory Inform-
ation

I

UT (2)

adV _(U.72)A

__ I
TTf
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COMMENTS: EXECUTION OF PROGRAM OBS

1. COMPILE ROUTINE

2. INPUT: ATTACH, TAPE2

where TAPE2 HAS THE FOLLOWING CHANNELS:

0T' 6T'T ' ' T3 ' - T' hr FOR A GIVEN TRAJECTORY

3. ATTACH D.L. KLEINMAN [13] LIBRARY

SUBROUTINE USED - DSCRT

4. RUN

5. OUTPUT: TIME, MEAN TRACKING ERROR, STANDARD DEVIATION

C
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P RO G:lAM 0=3(tINDJT OUTPUT, TA~i2)

j I(,l El S 0NA(, 7 X -) 0 41 4

COM'40N/MA NI/N ,12
C T I M 0. f '.TM S TE.'

W1C P = L.AMDAI, LAM)A2, K1, <(2,_Or DOT
Sir- ~DATA OE-L, N, TE-Ngl, 4 i,'.t5.

N 1 = N*,
II N2=N+l

Li1i
ii L2=2

PPIN,5f1- T~E I ~ Z 2 0 L- 3 FNR 6UTH

REAO*,I FG

iC(I% FOR L77? ITfl 10=2 ':OF ELEVATION

mEWIN3 2
C P1,P2,0'3 AR: '3::FICIENTS ASQCGICATED WITH NOISE COVARIANC$ V.

PRINT*,20H TY'E N Pl P2 P3
REA3*,Pl, p?,03

C INITIALIZE VE7CT1RS AD1TIC
00 1a I=! ,'Al.___ __

A(IO
16 X(I)=a.

A(i0)= 3(2 , T3 )

PH A (15) 3,IC

CALL CTA),W,? )
C Wi=T-ýANSITION "A'T~ W"2I.-NT7G~L OF TRANSITION MATRI<

JJ=1
DO 65 J=5.3

P?1AJJ)=-W2(J)-W2(Jl) - -

D0 60 1 1~

6 Z (I ,J) =R0,

DO 20 I ~ '4

L5 ~ C READ IN Ti;E-CT3)RY INPO F0`1 A7 AND EL IN OER--
I. REAO(2,3H 2(:I(ý ),T=1,3),(P{I,2),I=lp3) - - --

3 F CR11A T(iG 1-.4
c COMPUJTE E.SrTlATzfl OT !")T AA OT COT
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c VCt4O15. CCVA'1!AE,

C C0NP'JT1 MEAN' ST.aT- -EQUATION
00 25 1=4. 11

W2(I)=w(I+0.)Z(:

15 + I.-
2ý CONTINJ--

E20 35im 9~1.

8 35 CONATINU5
C C0IPUT;- Z^OVARIAX! -MATRIX JF STA'L ZOUATION

CALL MULT f41,Xv'J,!Ji.W2)
LiC S3 1=1411

40 X (1):-Af~)i W(i

T*T+DcLL
C MEAN TRACKING £T-PIC'Z TS 7(?)
C VARIAN07 Cý TRAC'(TNG .fRP.Ob IS X(2,Z)
C PRINT OUTFJT AT :-VT-Y SrC0N)

1F(T*GE.sT-'JD4)G0 T3 FCC
GO T3 1

500 CONTINUz-
END
SUBRDUTI%ý MiJLTti-,F,LL19P)
OIMEVlSIN :(L1,; (Lf i.G(16f H(Lj)
3O 0 I: 1=L
11=1
Do 1a<=0
TEIPftO.
0O 5 J=ILIL

TtMI T4P+)'II+ I

00 Z3 1=1,..
00 20 '(:1,.
T.L4Pz0.......-. -..

DO0 15 J2i9&.19&.
TEM=T-*4+;J)* -(II)

IA I:I1+L
KK= ((-1 14

20 H (KK) =T--14F
L2=L-i
tiC 33 1=19:.-
L3=141
00 30 J=L39L ..

30 K2= (j-L j L+ I 4
30 (Kl)=1'(K2)

*~4A
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